On space-time manifolds carrying a skew symmetric killing vector field

Filip Defever ${ }^{\text {a, },}$, Radu Rosca ${ }^{b}$
${ }^{\text {a }}$ Zuivere en Toegepaste Differentiaalmeetkunde, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B- 3001 Heverlee, Leuven, Belgium
b 59 Avenue Emile Zola, 75015 Paris, France

Received 6 February 1998; received in revised form 17 December 1998

Abstract

We analyse the structural properties, from a geometrical point of view, of space-time manifolds carrying a skew symmetric Killing vector field. © 1999 Elsevier Science B.V. All rights reserved.

Subj. Class.: Differential geometry; General relativity 1991 MSC: 53B20, 53B30, 53B50, 53C25, 53C35, 53C80 Keywords: Manifolds; Space-time; Killing vector fields; Cohomologically closed; Torse; Exterior concurrent vector fields

1. Introduction

Let (M, g) be a general space-time with usual differentiability conditions, and normed hyperbolic metric g (i.e. g is of index 1). We assume in this paper that M carries a non-null skew-symmetric Killing vector field C [1] (see also [2]) having as generative the timelike vector field e_{4} of an orthonormal vector basis

$$
\mathcal{O}=\operatorname{vect}\left\{e_{A} \mid A=1, \ldots, 4\right\}
$$

on (M, g). Since we also assume that the covariant differential operator ∇ is symmetric, then ∇C is expressed by

$$
\begin{equation*}
\nabla C=C \wedge e_{4} \tag{1}
\end{equation*}
$$

where \wedge is the wedge product of vectorfields.

[^0]It has been shown that the existence of C is determined by a closed differential system and that e_{4} is torse forming [3].

In the present paper we are mostly concerned with the case when e_{4}^{b} is invariant under C. This implies that $\mathcal{D}_{C}=\left\{C, e_{4}\right\}$ defines an exterior concurrent 2-distribution [5] and any vector field $Z_{C} \in \mathcal{D}_{C}$ satisfies

$$
\mathcal{R}\left(Z, Z_{C}\right)=3 g\left(Z, Z_{C}\right), \quad Z \in \Xi M
$$

where \mathcal{R} denotes the Ricci tensor field of ∇.
In addition, the following properties are proved:
(i) (M, g) is foliated by surfaces normal to \mathcal{D}_{C};
(ii) the mixed curvature forms of M [15] define a vector valued 2-form ψ which is covariantly closed;
(iii) the square of the lengths $\|C\|^{2}$ is an isoparametric function.

It is well known that in special relativity, electromagnetism is described in the 4-vector formalism by the Maxwell tensor ($F^{\mu \nu}$), which incorporates both the electric and magnetic field [7]. Equivalently, in the language of forms, there thus exists a 2 -form \mathcal{F} on \mathbb{R}^{4}

$$
\mathcal{F}=\sum_{\alpha=1}^{3} \mathcal{E}_{a} d u^{a} \wedge d u^{4}+\left(\mathcal{B}_{1} d u^{2} \wedge d u^{3}+\mathcal{B}_{2} d u^{3} \wedge d u^{1}+\mathcal{B}_{3} d u^{1} \wedge d u^{2}\right)
$$

where $u^{i}(i=1,2,3,4)$ are coordinates in Minkowski space [14].
Therefore, in general relativity on a space-time manifold M, electromagnetism is introduced by a 2 -form on M

$$
\mathcal{F}=\left(\mathcal{E}_{a} \omega^{a}\right) \wedge \omega^{4}+\sum_{\mathrm{cycl}} \mathcal{B}_{a} \omega^{b} \wedge \omega^{c},
$$

where $\left\{\omega^{A} \mid A=1, \ldots, 4\right\}$ is a local field of orthonormal coframes over $M ; \mathcal{F}$ is called the Faraday 2-form.

If one assumes that \mathcal{B} and \mathcal{E} coincide with the spacelike components of the skewsymmetric Killing vector field C, one finds that \mathcal{F} is a conformal symplectic form having the timelike covector $e_{4}^{b}=\omega^{4}$ as covector of Lee.

Finally, regarding the Lie algebra induced by C and e_{4}, the following properties are pointed out:
(i) C^{3} is self-invariant, i.e.

$$
\mathcal{L}_{C} C^{p}=0
$$

(ii) C is an affine Killing vector field;
(iii) the vector valued 2 -form ψ is invariant by C, i.e.

$$
\mathcal{L}_{C} \psi=0
$$

(iv) $\mathcal{L}_{C} \mathcal{F}$ and $\mathcal{L}_{e_{4}} \mathcal{F}$ are cohomologically closed, i.e.

$$
d^{-2 \omega^{4}}\left(\mathcal{L}_{C} \mathcal{F}\right)=0, \quad d^{-2 \omega^{4}}\left(\mathcal{L}_{e_{4}} \mathcal{F}\right)=0
$$

2. Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator defined by the metric tensor g (we assume that ∇ is the Levi-Civita connection). Let $\Gamma T M$ be the set of sections of the tangent bundle, and

$$
T M \xrightarrow{\mathrm{D}} T^{*} M \quad \text { and } \quad T M \stackrel{\sharp}{\rightleftarrows} T^{*} M
$$

the classical isomorphism defined by g (i.e. b is the index lowering operator, and $\#$ is the index raising operator).

We denote by

$$
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right),
$$

the set of vector valued q-forms ($q<\operatorname{dim} M$), and following [4], we write for the covariant derivative operator with respect to ∇

$$
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M)
$$

(it should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$ unlike $d^{2}=d \circ d=0$). If $p \in M$ then the vector valued 1 -form $d p \in A^{1}(M, T M)$ is the identity vector valued 1-form and is also called the soldering form of $M[9]$. Since ∇ is symmetric, one has that $d^{\nabla}(d p)=0$.

The cohomology operator [8] is defined by

$$
\begin{equation*}
d^{\omega}=d+e(\omega) \tag{2}
\end{equation*}
$$

and is acting on $\Lambda M ; e(\omega)$ is the exterior product by the closed 1-form ω. One has $d^{\omega} \circ d^{\omega}=$ 0 , and a form $u \in \Lambda M$ such that $d^{\omega} u=0$ is said to be d^{ω}-closed (or cohomologically closed).

A vector field $X \in \Xi M$ which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla X)=\nabla^{2} X=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{3}
\end{equation*}
$$

is defined to be an exterior concurrent vector field [1] (see also [2,6]). In (3) π is called the concurrence form and is defined by

$$
\begin{equation*}
\pi=\lambda X^{\mathrm{b}}, \quad \lambda \in \Lambda^{0} M \tag{4}
\end{equation*}
$$

In this case, if \mathcal{R} is the Ricci tensor, one has

$$
\begin{equation*}
\mathcal{R}(X, Z)=\epsilon(n-1) \lambda g(X, Z) \tag{5}
\end{equation*}
$$

$(\epsilon= \pm 1, Z \in \Xi M, n=\operatorname{dim} M)$.
A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is isoparametric if $(d f)^{\sharp}$ and $\operatorname{div}(d f)^{\sharp}$ are functions of f [10] $\left((d f)^{Z}=\operatorname{grad} f\right)$.

If \mathcal{T} is any conformal vector field, i.e. the conformal version of the Killing equation, that is $\mathcal{L}_{T}=\rho g, \rho=(2 / n) \operatorname{div} \mathcal{T}$ then

$$
\begin{equation*}
\mathcal{L}_{T} Z^{\emptyset}=\rho Z^{\triangleright}+[\mathcal{T}, Z]^{b} \tag{6}
\end{equation*}
$$

is Oersteds lemma [11].

Let $\mathcal{O}=\left\{e_{A} \mid A=1, \ldots, n\right\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}\right\}$ be its associated coframe. Then Cartans structure equations written in indexless manner are

$$
\begin{align*}
\nabla e & =\theta \otimes e \tag{7}\\
d \omega & =-\theta \wedge \omega \tag{8}\\
d \theta & =-\theta \wedge \theta+\Theta \tag{9}
\end{align*}
$$

In the above equations θ (resp. Θ) are the local connection forms in the tangent bundle $T M$ (resp. the curvature forms on M).

3. Skew-symmetric Killing vector fields

Let (M, g) be a space-time manifold with normal hyperbolic metric tensor g and let $\mathcal{O}=$ $\left\{e_{A} \mid A=1, \ldots, 4\right\}$ be a local field of orthonormal frames over M and $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}\right\}$ its associated coframe. We assume that the indices $a, b \in\{1,2,3\}$ correspond to the spacelike vectorfields e_{A}, whilst e_{4} corresponds to the timelike vectorfield. Then by reference to [12] (see also [2]), the soldering form $d p$ is expressed by:

$$
\begin{equation*}
d p=\omega^{4} \otimes e_{4}-\sum \omega^{a} \otimes e_{a} \tag{10}
\end{equation*}
$$

and in consequence of (10) one has the following structure equations [12]:

$$
\begin{array}{rlrl}
\nabla e_{a} & =\theta_{a}^{4} \otimes e_{4}-\theta_{a}^{b} \otimes e_{b}, & \nabla e_{4}=-\theta_{4}^{a} \otimes e_{a} \\
d \omega^{a} & =\omega^{4} \wedge \theta_{4}^{a}-\omega^{b} \wedge \theta_{b}^{a}, & & d \omega^{4}=-\omega^{a} \wedge \theta_{a}^{4} \tag{12}
\end{array}
$$

and

$$
\begin{equation*}
d \theta_{b}^{a}=\Theta_{b}^{a}-\theta_{b}^{c} \wedge \theta_{c}^{a}+\theta_{b}^{4} \wedge \theta_{4}^{a}, \quad d \theta_{4}^{a}=\Theta_{4}^{a}-\theta_{4}^{b} \wedge \theta_{b}^{a} \tag{13}
\end{equation*}
$$

Following [15], the curvature forms Θ_{4}^{a} are called the mixed curvature forms of the spacetime manifold M.

Let now

$$
\begin{equation*}
C=C^{4} e_{4}-\sum C^{a} e_{a}, \quad C^{A} \in \Lambda^{0} M \tag{14}
\end{equation*}
$$

be a vector field on M. In order to simplify, we set

$$
\begin{equation*}
C^{b}=\alpha=C^{4} \omega^{4}-\sum_{a} C^{a} \omega^{4} \tag{15}
\end{equation*}
$$

Assume that C is a skew-symmetric conformal vector field [13] (see also [13]), having the timelike vector field e_{4} as generative, i.e.

$$
\begin{equation*}
\nabla C=2 \lambda d p+C \wedge e_{4}, \quad \lambda \in \Lambda^{0} M \tag{16}
\end{equation*}
$$

As is known, one has $\mathcal{L}_{C} g=2 \lambda g, 2 \lambda=\operatorname{div} C / 2$, and one may write (16) as

$$
\begin{equation*}
\nabla C=2 \lambda d p+\omega^{4} \otimes C-\alpha \otimes e_{4} \tag{17}
\end{equation*}
$$

Making use of Eq. (11), one gets from (17)

$$
\begin{align*}
& d C^{a}=C^{b} \theta_{b}^{a}-C^{4} \theta_{4}^{a}+C^{a} \omega^{4}+2 \lambda \omega^{a}, \tag{18}\\
& d C^{4}=C^{b} \theta_{b}^{4}+\left(2 \lambda+C^{4}\right) \omega^{4}-\alpha
\end{align*}
$$

and with the help of (12), one derives

$$
\begin{equation*}
d \alpha=2 \omega^{4} \wedge \alpha \tag{19}
\end{equation*}
$$

But by definition, $d \omega^{4}$ is not conformal to α and so it follows at once from (19) that

$$
\begin{equation*}
d \omega^{4}=0 \tag{20}
\end{equation*}
$$

Since α is an exterior recurrent form having $2 \omega^{4}$ as recurrence form [17], we notice that (19) is the standard equation which is induced by skew-symmetric conformal or skew-symmetric Killing vector fields.

Without loss of generality, one may assume that the quadratic form $\left\langle d p, \nabla e_{4}\right\rangle$ is diagonal. Then one may set

$$
\begin{equation*}
\theta_{a}^{4}=-f \omega^{a}=0, \quad f \in \Lambda^{0} M \tag{21}
\end{equation*}
$$

and this by (10) and the second equation of (11), implies

$$
\begin{equation*}
\nabla e_{4}=f\left(d p-\omega^{4} \otimes e_{4}\right) \tag{22}
\end{equation*}
$$

which shows that the timelike vector field e_{4} is torse forming [3] (see also [2,18]).
Now, by (20) one quickly has

$$
\begin{equation*}
\mathcal{L}_{C} \omega^{4}=d C^{4}=(f-1) \alpha+\left(2 \lambda+(1-f) C^{4}\right) \omega^{4} \tag{23}
\end{equation*}
$$

and by Oersteds lemma (6), one finds

$$
\mathcal{L}_{C} \omega^{4}=(f-1) \alpha+(1-f) C^{4} \omega^{4}
$$

which implies that $2 \lambda=0$, i.e. C is a skew-symmetric Killing vectorfield.
Therefore we have the following proposition:
Proposition 3.1. On a space-time manifold (M, g) a skew-symmetric conformal vector field C having as generative its timelike vectorfield e_{4} of the \mathcal{O}-basis on M is a skewsymmetric Killing vector field.

4. Exterior concurrent distribution

In consequence of Proposition 3.1, we will study the case when Eq. (16) reduces to

$$
\begin{equation*}
\nabla C=C \wedge e_{4}, \tag{24}
\end{equation*}
$$

i.e. C is a skew-symmetric Killing vector field having the timelike vector field e_{4} as generative. In addition we assume that $\omega^{4}\left(\left(\omega^{4}\right)^{\sharp}=e_{4}\right)$ is invariant by C, i.e.

$$
\begin{equation*}
\mathcal{L}_{C} \omega^{4}=0 \Longleftrightarrow C^{4}=\text { const } . \tag{25}
\end{equation*}
$$

In this case, it is seen by (23) that $f=1$, (remember $\lambda=0$) and the converse is also true. In consequence of (25), e_{4} is a closed torse forming and, therefore, e_{4} is an exterior concurrent vector field [1]. Moreover, since (24) may be expressed as

$$
\begin{equation*}
\nabla C=\omega^{4} \otimes C-\alpha \otimes e_{4} \tag{26}
\end{equation*}
$$

then operating on ∇C by the operator d^{∇}, one derives

$$
\begin{equation*}
d^{\nabla}(\nabla C)=\nabla^{2} C=\alpha \wedge d p \tag{27}
\end{equation*}
$$

which shows the fact that C is also an exterior concurrent vector field. One may prove that the converse is also true, that is:

The properties that the timelike covector ω^{4} be invariant by C and that C be an exterior concurrent vector field are mutually equivalent.

It should be noticed that the existence of the skew-symmetric Killing vector field C is assumed by the closed differential system defined by (19) and (20). Since the operator ∇ acts inductively, one derives from (27) successively,

$$
\nabla^{3} C=2 \omega^{4} \wedge \nabla^{2} C, \quad \nabla^{4} C=0
$$

Hence, one may say that $\nabla^{3} C$ is covariant recurrent and that $\nabla^{4} C$ is a zero element of $A^{4}(M, T M)$. Moreover, since e_{4} and C are both exterior concurrent vector fields, and that this property is preserved by linearity, one may say that $\mathcal{D}_{C}=\left\{C, e_{4}\right\}$ defines an exterior concurrent 2 -distribution. Since clearly \mathcal{D}_{C} is an involutive distribution, it follows that M is foliated by surfaces M_{C}^{\perp} normal to \mathcal{D}_{C}.

Next, since in general

$$
\nabla^{2} X\left(Z, Z^{\prime}\right)=R\left(Z, Z^{\prime}\right) X, \quad \mathcal{R}(Z, X)=\sum\left\langle R\left(e_{A}, Z\right) X, e_{A}\right\rangle,
$$

where R (resp. \mathcal{R}) denotes the curvature tensor field (resp. the Ricci tensor field of ∇), one finds for any vector field $X_{C} \in \mathcal{D}_{C}$

$$
\begin{equation*}
\mathcal{R}\left(Z, X_{C}\right)=3 g\left(Z, X_{C}\right), \quad Z \in \Xi M \tag{28}
\end{equation*}
$$

On the other hand, making use of the second structure equation (13), one derives by (21) and taking into account that $f=1$

$$
\begin{equation*}
\Theta_{a}^{4}=\omega^{a} \wedge \omega^{4} \tag{29}
\end{equation*}
$$

This shows that the mixed curvature forms Θ_{a}^{4} are monomial and one easily finds

$$
\sum C^{a} \Theta_{a}^{4}=\omega^{4} \wedge \alpha
$$

and

$$
\begin{equation*}
\psi=\sum \Theta_{4}^{a} \otimes e_{a}=\omega^{4} \wedge d p \tag{30}
\end{equation*}
$$

We agree to call ψ the mixed curvature vector valued 2 -form of the space-time M under consideration. Operating on ψ by the operator d^{∇} one finds on behalf of (20)

$$
\begin{equation*}
d^{\nabla} \psi=0 \tag{31}
\end{equation*}
$$

which shows that ψ is a closed vector valued 2-form. In another order of ideas, if we set

$$
\begin{equation*}
2 l=\|C\|^{2}, \tag{32}
\end{equation*}
$$

then since $d C^{4}=0$, one derives from (18)

$$
\begin{equation*}
d l=2 l \omega^{4}-C^{4} \alpha, \tag{33}
\end{equation*}
$$

which is coherent with (19). Hence one may write

$$
\begin{equation*}
(d 2 l)^{\sharp}=4 l e_{4}-C^{4} C \tag{34}
\end{equation*}
$$

and we notice that $(d 2 l)^{\sharp}$ is also an exterior concurrent vector field. Next, since in general $\operatorname{div} Z=\operatorname{tr} \nabla Z, Z \in \Xi M$, then, taking into account the signature of g, one infers by (22)

$$
\begin{equation*}
\operatorname{div}(d 2 l)^{\sharp}=-4 l-\left(C^{4}\right)^{2} . \tag{35}
\end{equation*}
$$

Hence, since $\left\|(d 2 l)^{\sharp}\right\|^{2}=16 l^{2}-6\left(C^{4}\right)^{2} l$ and $C^{4}=$ const., it follows that $\left\|(d 2 l)^{\sharp}\right\|^{2}$ and $\operatorname{div}(d 2 l)^{\sharp}$ are functions of $2 l$. So, following the well-known definition [10], we conclude that $\|C\|^{2}$ is an isoparametric function. Moreover, setting in order to simplify

$$
\begin{equation*}
V=(d 2 l)^{\sharp}, \tag{36}
\end{equation*}
$$

one finds by (22), (25) and (34)

$$
\begin{equation*}
\nabla V=4 l d p-2 C^{4} \omega^{4} \otimes C+2 d l \otimes e_{4} \tag{37}
\end{equation*}
$$

and by a standard calculation it follows

$$
\begin{align*}
{\left[C, e_{4}\right] } & =0 \tag{38}\\
{\left[V, e_{4}\right] } & =-8 l e_{4} \tag{39}\\
{[V, C] } & =-\frac{1}{2} d \alpha\left(e_{4}, C\right) C \tag{40}
\end{align*}
$$

This shows that C and e_{4} commute and V defines an infinitesimal conformal transformation of e_{4} and C. Finally, by reference to the Faraday 2 -form \mathcal{F} on a Minkowski space, we agree to denominate

$$
\begin{equation*}
\mathcal{F}=\left(\mathcal{E}_{a} \omega^{a}\right) \wedge \omega^{4}+\sum_{\mathrm{cycl}} \mathcal{B}_{a} \omega^{b} \wedge \omega^{c}, \tag{41}
\end{equation*}
$$

(where $\sum_{\text {cycl }}$ is understood to be a cyclic permutation of the spacelike indices) the generalized Faraday 2-form (or the space-time Faraday form). The coefficients \mathcal{E}_{a} and \mathcal{B}_{a} represent the electric and magnetic fields, respectively, associated with \mathcal{F}. If we assume now that both vector fields \mathcal{E} and \mathcal{B} coincide with the spacelike components of C (i.e. $C_{a}=\mathcal{E}_{a}=\mathcal{B}_{a}$), then on behalf of (15) \mathcal{F} is expressed by

$$
\begin{equation*}
\mathcal{F}=-\alpha \wedge \omega^{4}+\phi \tag{42}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
\phi=\sum_{\mathrm{cycl}} C_{a} \omega^{b} \wedge \omega^{c} \tag{43}
\end{equation*}
$$

Next, with the help of (18), where $\lambda=0$, and making use of the structure equations (12) and remembering that $f=1$, one derives, after carrying out the calculations

$$
\begin{equation*}
d \phi=3 \omega^{4} \wedge \phi \tag{44}
\end{equation*}
$$

Now, by (19) one quickly derives from (42) and (44)

$$
\begin{equation*}
d \mathcal{F}=3 \omega^{4} \wedge \mathcal{F} \tag{45}
\end{equation*}
$$

which shows the fact that \mathcal{F} is a conformal symplectic form, having up to 3, the timelike covector ω^{4} as covector of Lee.

Further, taking the codifferential $\delta \mathcal{F}$ of \mathcal{F}, one finds, since $\delta=* d *(*$: star operator with respect to the orientation of M), that

$$
\delta \mathcal{F}=* d * \mathcal{F}=* d\left(-\phi+\alpha \wedge \omega^{4}\right)=-* d \mathcal{F},
$$

and also

$$
\delta \mathcal{F}=3 \alpha_{s}
$$

where α_{s} is the spacelike component of the Killing covector $C^{b}=\alpha$. Therefore, according to the well-known definition (see also [19]), $3 \alpha_{s}$ may be considered as the source 1-form corresponding to \mathcal{F}.

Summarizing, we have the following theorem:
Theorem 4.1. Let (M, g) be a general space-time manifold carrying a skew-symmetric Killing vector field C, having the timelike vector field e_{4} of an \mathcal{O}-basis as generative. Such a vectorfield C is determined by a closed differential system and e_{4} is torse forming.

If $\left(e_{4}\right)^{b}$ is invariant by C, i.e. $\mathcal{L}_{C}\left(e_{4}\right)^{b}=0$, then the distribution $\mathcal{D}_{C}=\left\{C, e_{4}\right\}$ is an exterior concurrent distribution and if \mathcal{R} denotes the Ricci tensor field, then any vector field $Z_{C} \in \mathcal{D}_{C}$ satisfies

$$
\mathcal{R}\left(Z, Z_{C}\right)=3 g\left(Z, Z_{C}\right), \quad Z \in \Xi M
$$

In addition, one has the following properties
(i) M is foliated by surfaces normal to \mathcal{D}_{C};
(ii) the square of the lengths $2 l=\|C\|^{2}$ of C is an isoparametric function, and $(d 2 l)^{\sharp}$ defines an infinitesimal conformal transformation of C and e_{4};
(iii) the mixed curvature forms Θ_{a}^{4} are monomial and they define a vector valued 2-form ψ which is covariant closed, i.e. $d^{\nabla} \psi=0$.
Finally, define

$$
\mathcal{F}=\left(\mathcal{E}_{a} \omega^{a}\right) \wedge \omega^{4}+\sum_{\mathrm{cycl}} \mathcal{B}_{a} \omega^{b} \wedge \omega^{c}
$$

the generalized Faraday 2-form on the space-time (M, g) ($\sum_{\text {cycl }}$ denotes the cyclic permutation of the spacelike indices, and \mathcal{E} (resp. \mathcal{B}) represents the electric (resp. the magnetic) vector field associated with \mathcal{F}). If \mathcal{E} and \mathcal{B} coincide with the spacelike components of C,
then \mathcal{F} is a conformal symplectic form having up to 3 the timelike covector $\omega^{4}=\left(e_{4}\right)^{b}$ as covector of Lee and $\delta F=3\left(C_{s}^{b}\right)$ is the source 1-form corresponding to $\mathcal{F}\left(C_{s}^{b}\right.$: spacelike component of C^{b}).

5. Properties of the Lie algebra

In this section, we shall point out some properties of the Lie algebra induced by the vector fields C, e_{4} and $V\left(V=(d 2 l)^{\sharp}\right)$. By (33) and (19) one derives after a short calculation

$$
\begin{equation*}
\mathcal{L}_{C} \alpha=0 \quad\left(\alpha=C^{b}\right) \tag{46}
\end{equation*}
$$

which shows that α is a self-invariant form.
Next, with the help of (46) and (38), one infers, taking the Lie derivative of (26)

$$
\begin{equation*}
\mathcal{L}_{C} \nabla C=0 . \tag{47}
\end{equation*}
$$

Hence the above equation proves the fact that the skew-symmetric Killing vector field C under consideration is an affine Killing vector field (see also [4]). On the other hand, denote by

$$
\sigma=\omega^{1} \wedge \omega^{2} \wedge \omega^{3} \wedge \omega^{4}
$$

the volume element of M. Then taking the star operator $* \omega^{4}$ of ω^{4} one has

$$
\begin{equation*}
* \omega^{4}=-\omega^{1} \wedge \omega^{2} \wedge \omega^{3} \tag{48}
\end{equation*}
$$

and since ω^{4} is closed, one readily finds

$$
\mathcal{L}_{e_{4}} * \omega^{4}=-3 * \omega^{4} .
$$

Hence, one may say that ω^{4} is star self-conformal. In the same order of ideas, it is easily seen that $\delta \omega^{4}=0$, (δ : codifferential operator) and so one may write

$$
(d \delta+\delta d) \omega^{4} \Longleftrightarrow \Delta \omega^{4}=0 .
$$

Thus the space-time covector ω^{4} is a harmonic form. On the other hand, by (30) and (31), one gets at once

$$
\mathcal{L}_{C} \psi=0,
$$

which shows that the vector valued 2-form ψ is invariant under C. Further, on behalf of (43) and (42) it is easily seen that one has

$$
\begin{equation*}
i_{C} \phi=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{C} \mathcal{F}=-2 l \omega^{4} \quad\left(2 l=\|C\|^{2}\right) \tag{50}
\end{equation*}
$$

In consequence of (49) and (50), it follows from (44) and (45) that

$$
\begin{equation*}
\mathcal{L}_{C} \mathcal{F}=-C^{4}\left(2 \mathcal{F}+\alpha \wedge \omega^{4}\right) \tag{51}
\end{equation*}
$$

and, by exterior differentiation of (51), one may write by reference to (2)

$$
\begin{equation*}
d^{-2 \omega^{4}}\left(\mathcal{L}_{C} \mathcal{F}\right)=0 \tag{52}
\end{equation*}
$$

Hence, it turns out that the Lie derivative $\mathcal{L}_{C} \mathcal{F}$ is a $d^{-2 \omega^{4}}$-closed form. Since $i_{e_{+}} \mathcal{F}=\alpha$, one similarly finds that $\mathcal{L}_{e_{4}} \mathcal{F}$ is also a $d^{-2 \omega^{4}}$-closed form.

Finally, let $\mathbb{L}: u \rightarrow u \wedge \Omega$ be the operator of Weyl [16] ($u \in \Lambda^{1} M, \Omega \in \Lambda^{2} M$), and by iteration $u_{q}=\mathbb{L}^{q} u=u \wedge \Omega^{q} \in \Lambda^{2 q+1} M$. Since in the case under consideration $\operatorname{dim} M=4$, we consider the 3 -form

$$
\mathbb{L}^{\mathrm{\prime}} \alpha=\alpha_{1}=\alpha \wedge \mathcal{F}
$$

Then, on behalf of (46) and (51), one has

$$
\mathcal{L}_{C} \alpha_{1}=\left(\mathcal{L}_{C} \alpha\right) \wedge \mathcal{F}+\alpha \wedge \mathcal{L}_{C} \mathcal{F}=2 C^{4} \alpha_{1}
$$

Remembering that $C^{4}=$ const., the above operation proves that C defines an infinitesimal homothety of the 3-form α_{1}. If we denote, $\left(\omega^{4}\right)_{1}=\omega^{4} \wedge \mathcal{F}$, one finds analogously that

$$
\mathcal{L}_{e_{4}}\left(\omega^{4}\right)_{1}=2\left(\omega^{4}\right)_{1}
$$

which means that e_{4} defines an infinitesimal homothety of the 3 -form $\left(\omega^{4}\right)_{1}$.
Theorem 5.1. Let (M, g) be a space-time manifold carrying a skew-symmetric Killing vector field C having the timelike vector field e_{4} as generative. The following properties of the Lie algebra are induced by C and e_{4} :
(i) C^{b} is a self-invariant form, i.e.

$$
\mathcal{L}_{C} C^{b}=0
$$

(ii) C is an affine Killing vector field, i.e.

$$
\mathcal{L}_{C} \nabla C=0 ;
$$

(iii) the timelike covector field $\omega^{4}=e_{4}^{b}$ is star self-conformal, i.e.

$$
\mathcal{L}_{e_{4}} * e_{4}^{3}=-3 * e_{4}^{\mathrm{b}} ;
$$

(iv) the vector valued 2 -form $\psi \in A^{2}(M, T M)$ associated with the mixed curvature forms Θ_{a}^{4} is invariant by C, i.e.

$$
\mathcal{L}_{C} \psi=0
$$

(v) the Lie derivatives $\mathcal{L}_{C} \mathcal{F}$ and $\mathcal{L}_{e_{4}} \mathcal{F}$ of the generalized Faraday 2-form are cohomologically closed, i.e.

$$
d^{-2 \omega^{4}}\left(\mathcal{L}_{C} \mathcal{F}\right)=0, \quad d^{-2 \omega^{4}}\left(\mathcal{L}_{e_{4}} \mathcal{F}\right)=0
$$

and C and e_{4} define infinitesimal homotheties of Weyls operator \mathbb{L} associated with \mathcal{F}.

References

[1] R. Rosca, On exterior concurrent skew symmetric Killing vector fields, Rend. Mat. Messina 2 (1993) 131-145.
[2] I. Mihai, R. Rosca, L. Verstraelen, Some aspects of the differential geometry of vector fields, Padge, K.U. Brussel 2 (1996).
[3] K. Yano, On torse forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944) 340-345.
[4] N.A. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.
[5] R. Rosca, Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986) 167-174.
[6] M. Petrovic, R. Rosca, L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989) 179-187.
[7] J.D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, New York, 1975.
[8] F. Guedira, A. Lichnerowicz, Geometrie des algebres de Lie locales de Kirilov, J. Math. Pure Appl. 68 (1984) 407-484.
[9] J. Dieudonné, Treatise on Analysis, vol. 4, Academic Press, New York, 1974.
[10] A. West, Isoparametric systems, Geo. Topol. Submanifolds 1 (1989) 222-230.
[11] T. Branson, Conformally covariant equations on differential forms, Comm. Part. Diff. Eq. 11 (1982) 393-431.
[12] E. Cartan, Oeuvres, Gauthier-Villars, Paris, 1955.
[13] S. Donato, R. Rosca, Structure conformal vector fields on an almost paracontact manifold with parallel structure vector, Österr. Akad. Wissenschaften Akt. 2 (1989) 202-211.
[14] R.K. Sachs, H. Wu, General Relativity for Mathematicians, Graduate Texts in Mathematics, vol. 48, Springer, New York, 1977.
[15] R. Rosca, S. Ianus, Space-time carrying a quasirecurrent pairing of vector fields, Gen. Rel. Grav. 8 (1977) 411-420.
[16] A. Weyl, Sur la theorie des formes différentielles attachées a une variété analytique complexe, Comm. Math. Helv. 20 (1947) 110-116.
[17] D.K. Datta, Exterior recurrent forms on manifolds, Tensor NS 36 (1982) 115-120.
[18] C. Udriste, Properties of torse forming vector fields, Tensor NS 42 (1982) 134-144.
[19] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, New York, 1988.

[^0]: ${ }^{1}$ Postdoctoraal Onderzoeker N.F.W.O.-Vlaanderen, Belgium.

